Ks0205 Keyestudio RC522 Sensor
Introduction
MF522-AN module adopts Philips MFRC522 original reader circuit chip design, easy to use, low cost, suitable for equipment development, development of advanced applications such reader users, the need for RF card terminal design / production of the user.
This module can be loaded directly into a variety of readers molds. Module uses voltage of 3.3V, and can be directly connected to the user any CPU board communication module through the SPI interface using simple few lines,which can guarantee stable and reliable reader distance.
Parameters
- Current:13-26mA / DC 3.3V
- Idle Current:10-13mA / DC 3.3V
- Sleep current: <80uA
- Peak current: <30mA
- Operating Frequency: 13.56MHz
- Supported card types: mifare1 S50, mifare1 S70, mifare UltraLight, mifare Pro, mifare Desfire
- Environmental Operating temperature: -20 to 80 degrees Celsius
- Environment Storage temperature: -40 to 85 degrees Celsius
- Relative Humidity: 5% -95%
PINOUTS
Connection Diagram
Sample Code
- SPI libraries download
- Code download Or you can directly copy the following code.
#include <SPI.h> #define uchar unsigned char #define uint unsigned int #define MAX_LEN 16 const int chipSelectPin = 10;//if the controller is UNO,328,168 const int NRSTPD = 5; //MF522command word #define PCD_IDLE 0x00 //NO action; cancel current command #define PCD_AUTHENT 0x0E //verify key #define PCD_RECEIVE 0x08 //receive data #define PCD_TRANSMIT 0x04 //send data #define PCD_TRANSCEIVE 0x0C //receive and send data #define PCD_RESETPHASE 0x0F //reset #define PCD_CALCCRC 0x03 //CRC calculation //Mifare_One Card command word #define PICC_REQIDL 0x26 // line-tracking area is dormant #define PICC_REQALL 0x52 //line-tracking area is interfered #define PICC_ANTICOLL 0x93 //Anti collision #define PICC_SElECTTAG 0x93 //choose cards #define PICC_AUTHENT1A 0x60 //Verify A key #define PICC_AUTHENT1B 0x61 //Verify B key #define PICC_READ 0x30 // Reader Module #define PICC_WRITE 0xA0 // letter block #define PICC_DECREMENT 0xC0 #define PICC_INCREMENT 0xC1 #define PICC_RESTORE 0xC2 //Transfer data to buffer #define PICC_TRANSFER 0xB0 //Save buffer data #define PICC_HALT 0x50 //Dormancy //MF522 Error code returned when communication #define MI_OK 0 #define MI_NOTAGERR 1 #define MI_ERR 2 //------------------MFRC522 Register--------------- //Page 0:Command and Status #define Reserved00 0x00 #define CommandReg 0x01 #define CommIEnReg 0x02 #define DivlEnReg 0x03 #define CommIrqReg 0x04 #define DivIrqReg 0x05 #define ErrorReg 0x06 #define Status1Reg 0x07 #define Status2Reg 0x08 #define FIFODataReg 0x09 #define FIFOLevelReg 0x0A #define WaterLevelReg 0x0B #define ControlReg 0x0C #define BitFramingReg 0x0D #define CollReg 0x0E #define Reserved01 0x0F //Page 1:Command #define Reserved10 0x10 #define ModeReg 0x11 #define TxModeReg 0x12 #define RxModeReg 0x13 #define TxControlReg 0x14 #define TxAutoReg 0x15 #define TxSelReg 0x16 #define RxSelReg 0x17 #define RxThresholdReg 0x18 #define DemodReg 0x19 #define Reserved11 0x1A #define Reserved12 0x1B #define MifareReg 0x1C #define Reserved13 0x1D #define Reserved14 0x1E #define SerialSpeedReg 0x1F //Page 2:CFG #define Reserved20 0x20 #define CRCResultRegM 0x21 #define CRCResultRegL 0x22 #define Reserved21 0x23 #define ModWidthReg 0x24 #define Reserved22 0x25 #define RFCfgReg 0x26 #define GsNReg 0x27 #define CWGsPReg 0x28 #define ModGsPReg 0x29 #define TModeReg 0x2A #define TPrescalerReg 0x2B #define TReloadRegH 0x2C #define TReloadRegL 0x2D #define TCounterValueRegH 0x2E #define TCounterValueRegL 0x2F //Page 3:TestRegister #define Reserved30 0x30 #define TestSel1Reg 0x31 #define TestSel2Reg 0x32 #define TestPinEnReg 0x33 #define TestPinValueReg 0x34 #define TestBusReg 0x35 #define AutoTestReg 0x36 #define VersionReg 0x37 #define AnalogTestReg 0x38 #define TestDAC1Reg 0x39 #define TestDAC2Reg 0x3A #define TestADCReg 0x3B #define Reserved31 0x3C #define Reserved32 0x3D #define Reserved33 0x3E #define Reserved34 0x3F uchar serNum[5]; uchar writeDate[16] ={'T', 'e', 'n', 'g', ' ', 'B', 'o', 0, 0, 0, 0, 0, 0, 0, 0,0}; uchar sectorKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, }; uchar sectorNewKeyA[16][16] = {{0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xff,0x07,0x80,0x69, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, }; void setup() { Serial.begin(9600); // RFID reader SOUT pin connected to Serial RX pin at 2400bps // start the SPI library: SPI.begin(); pinMode(chipSelectPin,OUTPUT); // Set digital pin 10 as OUTPUT to connect it to the RFID /ENABLE pin digitalWrite(chipSelectPin, LOW); // Activate the RFID reader pinMode(NRSTPD,OUTPUT); // Set digital pin 10 , Not Reset and Power-down digitalWrite(NRSTPD, HIGH); MFRC522_Init(); } void loop() { uchar i,tmp; uchar status; uchar str[MAX_LEN]; uchar RC_size; uchar blockAddr; //Select the address of the operation 0~63 // searching card, return card type status = MFRC522_Request(PICC_REQIDL, str); if (status == MI_OK) { } status = MFRC522_Anticoll(str); memcpy(serNum, str, 5); if (status == MI_OK) { Serial.println("The card's number is : "); Serial.print(serNum[0],BIN); Serial.print(serNum[1],BIN); Serial.print(serNum[2],BIN); Serial.print(serNum[3],BIN); Serial.print(serNum[4],BIN); Serial.println(" "); } // select card, return card capacity RC_size = MFRC522_SelectTag(serNum); if (RC_size != 0) {} // write data card blockAddr = 7; // data block 7 status = MFRC522_Auth(PICC_AUTHENT1A, blockAddr, sectorKeyA[blockAddr/4], serNum); // authentication if (status == MI_OK) { // write data status = MFRC522_Write(blockAddr, sectorNewKeyA[blockAddr/4]); Serial.print("set the new card password, and can modify the data of the Sector: "); Serial.print(blockAddr/4,DEC); // write data blockAddr = blockAddr - 3 ; status = MFRC522_Write(blockAddr, writeDate); if(status == MI_OK) { Serial.println("OK!"); } } // read card blockAddr = 7; // data block 7 status = MFRC522_Auth(PICC_AUTHENT1A, blockAddr, sectorNewKeyA[blockAddr/4], serNum); // authentication if (status == MI_OK) { // read data blockAddr = blockAddr - 3 ; status = MFRC522_Read(blockAddr, str); if (status == MI_OK) { Serial.println("Read from the card ,the data is : "); for (i=0; i<16; i++) { Serial.print(str[i]); } Serial.println(" "); } } Serial.println(" "); MFRC522_Halt(); // command card into sleeping mode } void Write_MFRC522(uchar addr, uchar val) { digitalWrite(chipSelectPin, LOW); SPI.transfer((addr<<1)&0x7E); SPI.transfer(val); digitalWrite(chipSelectPin, HIGH); } uchar Read_MFRC522(uchar addr) { uchar val; digitalWrite(chipSelectPin, LOW); //address format: 1XXXXXX0 SPI.transfer(((addr<<1)&0x7E) | 0x80); val =SPI.transfer(0x00); digitalWrite(chipSelectPin, HIGH); return val; } void SetBitMask(uchar reg, uchar mask) { uchar tmp; tmp = Read_MFRC522(reg); Write_MFRC522(reg, tmp | mask); // set bit mask } void ClearBitMask(uchar reg, uchar mask) { uchar tmp; tmp = Read_MFRC522(reg); Write_MFRC522(reg, tmp & (~mask)); // clear bit mask } void AntennaOn(void) { uchar temp; temp = Read_MFRC522(TxControlReg); if (!(temp & 0x03)) { SetBitMask(TxControlReg, 0x03); } } void AntennaOff(void) { ClearBitMask(TxControlReg, 0x03); } void MFRC522_Reset(void) { Write_MFRC522(CommandReg, PCD_RESETPHASE); } void MFRC522_Init(void) { digitalWrite(NRSTPD,HIGH); MFRC522_Reset(); //Timer: TPrescaler*TreloadVal/6.78MHz = 24ms Write_MFRC522(TModeReg, 0x8D); //Tauto=1; f(Timer) = 6.78MHz/TPreScaler Write_MFRC522(TPrescalerReg, 0x3E); //TModeReg[3..0] + TPrescalerReg Write_MFRC522(TReloadRegL, 30); Write_MFRC522(TReloadRegH, 0); Write_MFRC522(TxAutoReg, 0x40); //100%ASK Write_MFRC522(ModeReg, 0x3D); //CRC original value 0x6363 ??? AntennaOn(); // open antenna } uchar MFRC522_Request(uchar reqMode, uchar *TagType) { uchar status; uint backBits; // bits of data received Write_MFRC522(BitFramingReg, 0x07); //TxLastBists = BitFramingReg[2..0] ??? TagType[0] = reqMode; status = MFRC522_ToCard(PCD_TRANSCEIVE, TagType, 1, TagType, &backBits); if ((status != MI_OK) || (backBits != 0x10)) { status = MI_ERR; } return status; } uchar MFRC522_ToCard(uchar command, uchar *sendData, uchar sendLen, uchar *backData, uint *backLen) { uchar status = MI_ERR; uchar irqEn = 0x00; uchar waitIRq = 0x00; uchar lastBits; uchar n; uint i; switch (command) { case PCD_AUTHENT: // card key authentication { irqEn = 0x12; waitIRq = 0x10; break; } case PCD_TRANSCEIVE: // send data in FIFO { irqEn = 0x77; waitIRq = 0x30; break; } default: break; } Write_MFRC522(CommIEnReg, irqEn|0x80); // permission for interrupt request ClearBitMask(CommIrqReg, 0x80); // clear all bits of the interrupt request SetBitMask(FIFOLevelReg, 0x80); //FlushBuffer=1, FIFO initialize Write_MFRC522(CommandReg, PCD_IDLE); //NO action; clear current command ??? // write data into FIFO for (i=0; i<sendLen; i++) { Write_MFRC522(FIFODataReg, sendData[i]); } // execute command Write_MFRC522(CommandReg, command); if (command == PCD_TRANSCEIVE) { SetBitMask(BitFramingReg, 0x80); //StartSend=1,transmission of data starts } // wait for the completion of data transmission i = 2000; // adjust i according to clock frequency, max wait time for M1 card operation 25ms ??? do { //CommIrqReg[7..0] //Set1 TxIRq RxIRq IdleIRq HiAlerIRq LoAlertIRq ErrIRq TimerIRq n = Read_MFRC522(CommIrqReg); i--; } while ((i!=0) && !(n&0x01) && !(n&waitIRq)); ClearBitMask(BitFramingReg, 0x80); //StartSend=0 if (i != 0) { if(!(Read_MFRC522(ErrorReg) & 0x1B)) //BufferOvfl Collerr CRCErr ProtecolErr { status = MI_OK; if (n & irqEn & 0x01) { status = MI_NOTAGERR; //?? } if (command == PCD_TRANSCEIVE) { n = Read_MFRC522(FIFOLevelReg); lastBits = Read_MFRC522(ControlReg) & 0x07; if (lastBits) { *backLen = (n-1)*8 + lastBits; } else { *backLen = n*8; } if (n == 0) { n = 1; } if (n > MAX_LEN) { n = MAX_LEN; } // read the data received in FIFO for (i=0; i<n; i++) { backData[i] = Read_MFRC522(FIFODataReg); } } } else { status = MI_ERR; } } //SetBitMask(ControlReg,0x80); //timer stops //Write_MFRC522(CommandReg, PCD_IDLE); return status; } uchar MFRC522_Anticoll(uchar *serNum) { uchar status; uchar i; uchar serNumCheck=0; uint unLen; Write_MFRC522(BitFramingReg, 0x00); //TxLastBists = BitFramingReg[2..0] serNum[0] = PICC_ANTICOLL; serNum[1] = 0x20; status = MFRC522_ToCard(PCD_TRANSCEIVE, serNum, 2, serNum, &unLen); if (status == MI_OK) { // verify card sequence number for (i=0; i<4; i++) { serNumCheck ^= serNum[i]; } if (serNumCheck != serNum[i]) { status = MI_ERR; } } //SetBitMask(CollReg, 0x80); //ValuesAfterColl=1 return status; } void CalulateCRC(uchar *pIndata, uchar len, uchar *pOutData) { uchar i, n; ClearBitMask(DivIrqReg, 0x04); //CRCIrq = 0 SetBitMask(FIFOLevelReg, 0x80); // clear FIFO pointer //Write_MFRC522(CommandReg, PCD_IDLE); // write data into FIFO for (i=0; i<len; i++) { Write_MFRC522(FIFODataReg, *(pIndata+i)); } Write_MFRC522(CommandReg, PCD_CALCCRC); // wait for completion of CRC calculation i = 0xFF; do { n = Read_MFRC522(DivIrqReg); i--; } while ((i!=0) && !(n&0x04)); //CRCIrq = 1 // read result from CRC calculation pOutData[0] = Read_MFRC522(CRCResultRegL); pOutData[1] = Read_MFRC522(CRCResultRegM); } uchar MFRC522_SelectTag(uchar *serNum) { uchar i; uchar status; uchar size; uint recvBits; uchar buffer[9]; //ClearBitMask(Status2Reg, 0x08); //MFCrypto1On=0 buffer[0] = PICC_SElECTTAG; buffer[1] = 0x70; for (i=0; i<5; i++) { buffer[i+2] = *(serNum+i); } CalulateCRC(buffer, 7, &buffer[7]); //?? status = MFRC522_ToCard(PCD_TRANSCEIVE, buffer, 9, buffer, &recvBits); if ((status == MI_OK) && (recvBits == 0x18)) { size = buffer[0]; } else { size = 0; } return size; } uchar MFRC522_Auth(uchar authMode, uchar BlockAddr, uchar *Sectorkey, uchar *serNum) { uchar status; uint recvBits; uchar i; uchar buff[12]; // Verification instructions + block address + sector password + card sequence number buff[0] = authMode; buff[1] = BlockAddr; for (i=0; i<6; i++) { buff[i+2] = *(Sectorkey+i); } for (i=0; i<4; i++) { buff[i+8] = *(serNum+i); } status = MFRC522_ToCard(PCD_AUTHENT, buff, 12, buff, &recvBits); if ((status != MI_OK) || (!(Read_MFRC522(Status2Reg) & 0x08))) { status = MI_ERR; } return status; } uchar MFRC522_Read(uchar blockAddr, uchar *recvData) { uchar status; uint unLen; recvData[0] = PICC_READ; recvData[1] = blockAddr; CalulateCRC(recvData,2, &recvData[2]); status = MFRC522_ToCard(PCD_TRANSCEIVE, recvData, 4, recvData, &unLen); if ((status != MI_OK) || (unLen != 0x90)) { status = MI_ERR; } return status; } uchar MFRC522_Write(uchar blockAddr, uchar *writeData) { uchar status; uint recvBits; uchar i; uchar buff[18]; buff[0] = PICC_WRITE; buff[1] = blockAddr; CalulateCRC(buff, 2, &buff[2]); status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff, &recvBits); if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A)) { status = MI_ERR; } if (status == MI_OK) { for (i=0; i<16; i++) // write 16Byte data into FIFO { buff[i] = *(writeData+i); } CalulateCRC(buff, 16, &buff[16]); status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 18, buff, &recvBits); if ((status != MI_OK) || (recvBits != 4) || ((buff[0] & 0x0F) != 0x0A)) { status = MI_ERR; } } return status; } void MFRC522_Halt(void) { uchar status; uint unLen; uchar buff[4]; buff[0] = PICC_HALT; buff[1] = 0; CalulateCRC(buff, 2, &buff[2]); status = MFRC522_ToCard(PCD_TRANSCEIVE, buff, 4, buff,&unLen); }
Result
In this experiment, when the IC card gets close to it, RFID module writes data into the IC card, then reads out the data, displaying on the monitor window. As below picture shown:
Resources
- SPI Libraries Download:
https://drive.google.com/open?id=1iAkwG5YWjfji7GH9MAzNc8g_VegLoSEv
- Code Download:
https://drive.google.com/open?id=1a2cjA93c-e0h9xLi5EOsND6bluwViH5i
- PDF:
https://drive.google.com/open?id=1RkUicSK7nDiVxdh1NQu3Km7lKhT6qrJ4
- Video:
http://video.keyestudio.com/ks0067/