Ks0441 Keyestudio Desktop Mini Bluetooth Smart Car V3.0: Difference between revisions

From Keyestudio Wiki
Jump to navigation Jump to search
Line 116: Line 116:


<br>
<br>
== Get Started with Hardware Projects ==
<br>
===<span style="color:blue"> Project 1: Built-in LED </span>===
[[image:UNO R3--.png|thumb|400px|right|Keyestudio UNO R3 ]]
When it comes to using the UNO R3 as core of our robot, the UNO is the best board to get started with electronics and coding. <br>
If this is your first experience tinkering with the platform, the UNO is the most robust board you can start playing with.<br>
Well, let's at first have a look at this [https://wiki.keyestudio.com/Ks0001_keyestudio_UNO_R3_BOARD  UNO R3 board].  <br>
Here is an explanation chart of what every element and interface of the board does:
<br>[[Image:Ks0001-pinout.png|1000px|frameless]]<br>
{| width="80%" cellspacing="0" border="1"
|-
| align="center" | [[Image:KS0001 5-1.png|500px|frameless]]
| align="light" | '''ICSP (In-Circuit Serial Programming) Header'''
In most case, ICSP is the AVR,an Arduino micro-program header consisting of MOSI, MISO, SCK, RESET, VCC, and GND. It is often called the SPI (serial peripheral interface) and can be considered an "extension" of the output. In fact, slave the output devices under the SPI bus host.<br>
When connecting to PC, program the firmware to ATMEGA328P-PU.
|-
| align="center" | [[Image:KS0001 5-2.png|500px|frameless]]
| align="light" | '''Power LED Indicator'''
Powering the Arduino, LED on means that your circuit board is correctly powered on. If LED is off, connection is wrong.
|-
| align="center" | [[Image:KS0001 5-3.png|500px|frameless]]
| align="light" | '''Digital I/O'''
Arduino UNO has 14 digital input/output pins (of which 6 can be used as PWM outputs). These pins can be configured as digital input pin to read the logic value (0 or 1). Or used as digital output pin to drive different modules like LED, relay, etc. The pin labeled “〜” can be used to generate PWM.
|-
| align="center" | [[Image:KS0001 5-4.png|500px|frameless]]
| align="light" | '''GND ( Ground pin headers)'''
Used for circuit ground 
|-
| align="center" | [[Image:KS0001 5-5.png|500px|frameless]]
| align="light" | '''AREF'''
Reference voltage (0-5V) for analog inputs. Used with [https://www.arduino.cc/reference/en/language/functions/analog-io/analogreference/    analogReference()].
|-
| align="center" | [[Image:KS0001 5-6.png|500px|frameless]]
| align="light" | '''SDA'''
IIC communication pin
|-
| align="center" | [[Image:KS0001 5-7.png|500px|frameless]]
| align="light" | '''SCL'''
IIC communication pin
|-
| align="center" | [[Image:KS0001 5-8.png|500px|frameless]]
| align="light" | '''ICSP (In-Circuit Serial Programming) Header'''
In most case, ICSP is the AVR,an Arduino micro-program header consisting of MOSI, MISO, SCK, RESET, VCC, and GND. Connected to ATMEGA 16U2-MU. When connecting to PC, program the firmware to ATMEGA 16U2-MU.
|-
| align="center" | [[Image:KS0001 5-9.png|500px|frameless]]
| align="light" | '''RESET Button'''
You can reset your Arduino board, for example, start the program from the initial status. You can use the RESET button.
|-
| align="center" | [[Image:KS0001 5-10.png|500px|frameless]]
| align="light" | '''D13 LED'''
There is a built-in LED driven by digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.
|-
| align="center" | [[Image:KS0001 5-11.png|500px|frameless]]
| align="light" | '''USB Connection'''
Arduino board can be powered via USB connector.
All you needed to do is connecting the USB port to PC using a USB cable.
|-
| align="center" | [[Image:KS0001 5-12.png|500px|frameless]]
| align="light" | '''ATMEGA 16U2-MU  '''
USB to serial chip, can convert the USB signal into serial port signal.
|-
| align="center" | [[Image:KS0001 5-13.png|500px|frameless]]
| align="light" | '''TX LED'''
Onboard you can find the label: TX (transmit)
When Arduino board communicates via serial port, send the message, TX led flashes.
|-
| align="center" | [[Image:KS0001 5-14.png|500px|frameless]]
| align="light" | '''RX LED'''
Onboard you can find the label: RX(receive )
When Arduino board communicates via serial port, receive the message, RX led flashes.
|-
| align="center" | [[Image:KS0001 5-15.png|500px|frameless]]
| align="light" | '''Crystal Oscillator '''
Helping Arduino deal with time problems. How does Arduino calculate time? by using a crystal oscillator.<br>
The number printed on the top of the Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16MHz.
|-
| align="center" | [[Image:KS0001 5-16.png|500px|frameless]]
| align="light" | '''Voltage Regulator'''
To control the voltage provided to the Arduino board, as well as to stabilize the DC voltage used by the processor and other components.<br>
Convert an external input DC7-12V voltage into DC 5V, then switch DC 5V  to the processor and other components.
|-
| align="center" | [[Image:KS0001 5-17.png|500px|frameless]]
| align="light" | '''DC Power Jack'''
Arduino board can be supplied with an external power DC7-12V from the DC power jack.
|-
| align="center" | [[Image:KS0001 5-18.png|500px|frameless]]
| align="light" | '''IOREF '''
Used to configure the operating voltage of microcontrollers. Use it less.
|-
| align="center" | [[Image:KS0001 5-19.png|500px|frameless]]
| align="light" | '''RESET Header '''
Connect an external button to reset the board. The function is the same as reset button (labeled 9)
|-
| align="center" | [[Image:KS0001 5-20.png|500px|frameless]]
| align="light" | '''Power Pin 3V3'''
A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
|-
| align="center" | [[Image:KS0001 5-21.png|500px|frameless]]
| align="light" | '''Power Pin 5V'''
Provides 5V output voltage
|-
| align="center" | [[Image:KS0001 5-22.png|500px|frameless]]
| align="light" | '''Vin'''
You can supply an external power input DC7-12V through this pin to Arduino board.
|-
| align="center" | [[Image:KS0001 5-23.png|500px|frameless]]
| align="light" | '''Analog Pins'''
Arduino UNO board has 6 analog inputs, labeled A0 through A5. <br>
These pins can read the signal from analog sensors (such as humidity sensor or temperature sensor), and convert it into the digital value that can read by microcontrollers)
Can also used as digital pins, A0=D14, A1=D15, A2=D16, A3=D17, A4=D18, A5=D19.
|-
| align="center" | [[Image:KS0001 5-24.png|500px|frameless]]
| align="light" | '''Microcontroller '''
Each Arduino board has its own microcontroller. You can regard it as the brain of your board.<br>
The main IC (integrated circuit) on the Arduino is slightly different from the panel pair. Microcontrollers are usually from ATMEL. Before you load a new program on the Arduino IDE, you must know what IC is on your board. This information can be checked at the top of IC.
|-
|}
<br>
<br>
Let’s make a simple test for the UNO built-in LED (D13). <br>
We will work on blinking an LED. That’s right - it’s as simple as turning a light on and off! <br>
Now enough talking - let’s get started with the LED project.<br>
<big>'''Blinking an LED'''</big><br>
It’s pretty simple to turn a built-in led on and off. We only require UNO R3 control board and a USB cable to enter the wonderful programming world.<br>
Connect your UNO R3 board to the computer’s USB port using a USB cable for communication.<br>
<br> [[File:0428图片15.png|500px|frameless]]<br>
<br>
'''Test Code:'''<br>
Open [https://wiki.keyestudio.com/Download_Mixly_Software  Mixly blocks platform] to get started with coding. <br>
First, click '''IN/OUT''', drag the <span style="color:brown"> <big>“DigitalWrite PIN# (0)Stat(HIGH)” block.</big> </span><br>
<br> [[File:0428图片16.png|500px|frameless]]<br>
<br> 
This block is used to set the level HIGH or LOW of Digital pin. <br>
* Select HIGH is to set the HIGH level. <br>
* Select LOW is to set the LOW level.<br>
* The HIGH level is the state of high voltage, generally recorded as 1.<br>
* High voltage, high current, the LED lights. <br>
* The LOW level is the state of low voltage, generally recorded as 0. <br>
* Low voltage, low current, the LED Not lights. <br>
To observe the LED blink obviously, we need to add a Delay block.<br>
Check the test code below and upload it to your UNO R3 board.
<br> [[File:0428图片17.png|500px|frameless]]<br>
<br>
'''What you should see:'''<br>
Drag the test code to Mixly window; remember to select the proper board and COM port. <br>
Then compile and upload the code to your control board. Upload success message will appear on the bottom bar.<br>
The UNO built-in LED (label “L”) will turn on for 1 second, and then turn off for 1 second, alternately and circularly.<br>
<br> [[File:0428图片18.png|500px|frameless]]<br>
<br> [[File:0428图片19.png|500px|frameless]]<br>
<br>
=== <span style="color:blue"> Project 2: Displaying Images </span>===
The robot run status will show on keyestudio 8x16 LED matrix panel. So first let’s learn how to program this 8x16 LED matrix panel.
[[image:0428图片20.png|thumb|400px|right|keyestudio 8x16 LED matrix panel ]]
<br>
'''Hardware Introduction:''' <br>

Revision as of 14:25, 12 August 2019

Keyestudio Desktop Mini Bluetooth Smart Car V3.0


Description

We can often see others on the internet making use of control boards and electrical components to build their own creative robots. Wanna DIY your own robot?
Here comes keyestudio desktop mini Bluetooth smart car V3.0, which is an upgraded version of keyestudio desktop mini Bluetooth smart car V2.0.
The smart car still keeps the functions like line tracking, obstacle avoidance, IR and Bluetooth control and more.
Furthermore, we make a great improvement for the smart car as follows:

  • 1) The Acrylic plates are more bright and colorful;
  • 2) Adding a microphone sound module to make a fantastic sound when driving the car run;
  • 3) Using Bluetooth HM-10 module,which can support Bluetooth 4.0; supporting both Android and iOS system; also can actuate the smart car with our own designed Bluetooth APP.
  • 4) Can freely choose the battery case 18650 or 4-cell AA battery case to supply power for the robot car. Note that batteries are Not Included. Users can freely choose two 18650 batteries or four AA batteries (1.5V) to supply power for the robot car.
  • 5) Making improvements on the motor drive board; one is coming with a slide switch for controlling the power switch;the other is adding 8 jumper caps to control the DC motor direction,easy for code debugging.
  • 6) Coding the robot car with Mixly blocks software, simple and ready to play.

From the basics up to complex projects, through this kit you can learn to control the robot car with Mixly blocks coding. Easy to code and learn coding and computational thinking.
If you are looking for inspiration, you can find a great variety of tutorials here. Take your brain on a fun and inspiring journey through the world of programming and electronics.


Parameters

  • 1)Motor Voltage range: 1-6V; motor shaft length: 10mm; speed: 6.0V 100rpm/min.
  • 2)Motor control is driven by L298P;
  • 3)Three groups of line tracking modules, to detect black-white line with higher accuracy and can also be used for anti-fall control;
  • 4)Two groups of obstacle detector modules, to detect whether there are obstacles on the left or right side of smart car; Ultrasonic module is used to detect the distance between ultrasonic and obstacles, forming the smart car’s obstacle avoidance system;
  • 5)Bluetooth wireless module can be paired with Bluetooth device on mobile phone to remotely control smart car;
  • 6)Infrared receiver module is matched with an infrared remote control to control the smart car;
  • 7)Can access the external 7 ~ 12V voltage.


Component List

When get this smart car kit, at first glance, you will see the beautiful packaging box. And each component is safely packed inside the small bag in order. You will get such a bulk of components and screws to make your own smart car. So we have listed all the components as follows:

441图1.png

441图2.png

441图3.png

441图4.png

441图5.png


Get Started with Mixly and ARDUINO

1)Installing Arduino IDE

When program the UNO development board, you can download the Arduino integrated development environment from the link:


See more contents at:


Ks0436-9.png

The functions of each button on the Toolbar are listed below:
IDE.png

IDE 1.png Verify/Compile Check the code for errors
IDE 2.png Upload Upload the current Sketch to the Arduino
IDE 3.png New Create a new blank Sketch
IDE 4.png Open Show a list of Sketches
IDE 5.png Save Save the current Sketch
IDE 6.png Serial Monitor Display the serial data being sent from the Arduino


Or you can browse the KEYESTUDIO website at this link, https://www.keyestudio.com/ and then click on the WIKI Tutorial.
Ks0446图片6.png



2)Introduction for Mixly Blocks

Mixly is a free open-source graphical Arduino programming software, based on Google’s Blockly graphical programming framework, and developed by Mixly Team@ BNU.
It is a free open-source graphical programming tool for creative electronic development; a complete support ecosystem for creative e-education; a stage for maker educators to realize their dreams.
More info please check the link to download the Mixly blocks software.

Before starting the robot projects, please click the link to get the basic understanding of Mixly software.
Ks0446图片8.png



3)Import Robot Library

For the robot kit, we have developed keyestudio robot car library.
Don’t forget to import the keyestudio desktop car library to Mixly software before coding the robot projects.
Must import the robot car library first, or else you CANN'T check all the test code.


441图6.png

Unzip the desktop_car library package, you can see the desktop_car XML.document.
441图7.png

Then import this document into Mixly library. Import custom library successfully!
441图8.png

You are able to click “Manager” to manage all imported libraries.
Note: sometimes it may exists a conflict between libraries, so should keep only correct car library when using and delete other library.

441图9.png



Get Started with Hardware Projects


Project 1: Built-in LED

Keyestudio UNO R3

When it comes to using the UNO R3 as core of our robot, the UNO is the best board to get started with electronics and coding.
If this is your first experience tinkering with the platform, the UNO is the most robust board you can start playing with.
Well, let's at first have a look at this UNO R3 board.

Here is an explanation chart of what every element and interface of the board does:
Ks0001-pinout.png

KS0001 5-1.png ICSP (In-Circuit Serial Programming) Header

In most case, ICSP is the AVR,an Arduino micro-program header consisting of MOSI, MISO, SCK, RESET, VCC, and GND. It is often called the SPI (serial peripheral interface) and can be considered an "extension" of the output. In fact, slave the output devices under the SPI bus host.
When connecting to PC, program the firmware to ATMEGA328P-PU.

KS0001 5-2.png Power LED Indicator

Powering the Arduino, LED on means that your circuit board is correctly powered on. If LED is off, connection is wrong.

KS0001 5-3.png Digital I/O

Arduino UNO has 14 digital input/output pins (of which 6 can be used as PWM outputs). These pins can be configured as digital input pin to read the logic value (0 or 1). Or used as digital output pin to drive different modules like LED, relay, etc. The pin labeled “〜” can be used to generate PWM.

KS0001 5-4.png GND ( Ground pin headers)

Used for circuit ground

KS0001 5-5.png AREF

Reference voltage (0-5V) for analog inputs. Used with analogReference().

KS0001 5-6.png SDA

IIC communication pin

KS0001 5-7.png SCL

IIC communication pin

KS0001 5-8.png ICSP (In-Circuit Serial Programming) Header

In most case, ICSP is the AVR,an Arduino micro-program header consisting of MOSI, MISO, SCK, RESET, VCC, and GND. Connected to ATMEGA 16U2-MU. When connecting to PC, program the firmware to ATMEGA 16U2-MU.

KS0001 5-9.png RESET Button

You can reset your Arduino board, for example, start the program from the initial status. You can use the RESET button.

KS0001 5-10.png D13 LED

There is a built-in LED driven by digital pin 13. When the pin is HIGH value, the LED is on, when the pin is LOW, it's off.

KS0001 5-11.png USB Connection

Arduino board can be powered via USB connector. All you needed to do is connecting the USB port to PC using a USB cable.

KS0001 5-12.png ATMEGA 16U2-MU

USB to serial chip, can convert the USB signal into serial port signal.

KS0001 5-13.png TX LED

Onboard you can find the label: TX (transmit) When Arduino board communicates via serial port, send the message, TX led flashes.

KS0001 5-14.png RX LED

Onboard you can find the label: RX(receive ) When Arduino board communicates via serial port, receive the message, RX led flashes.

KS0001 5-15.png Crystal Oscillator

Helping Arduino deal with time problems. How does Arduino calculate time? by using a crystal oscillator.
The number printed on the top of the Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16MHz.

KS0001 5-16.png Voltage Regulator

To control the voltage provided to the Arduino board, as well as to stabilize the DC voltage used by the processor and other components.
Convert an external input DC7-12V voltage into DC 5V, then switch DC 5V to the processor and other components.

KS0001 5-17.png DC Power Jack

Arduino board can be supplied with an external power DC7-12V from the DC power jack.

KS0001 5-18.png IOREF

Used to configure the operating voltage of microcontrollers. Use it less.

KS0001 5-19.png RESET Header

Connect an external button to reset the board. The function is the same as reset button (labeled 9)

KS0001 5-20.png Power Pin 3V3

A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.

KS0001 5-21.png Power Pin 5V

Provides 5V output voltage

KS0001 5-22.png Vin

You can supply an external power input DC7-12V through this pin to Arduino board.

KS0001 5-23.png Analog Pins

Arduino UNO board has 6 analog inputs, labeled A0 through A5.
These pins can read the signal from analog sensors (such as humidity sensor or temperature sensor), and convert it into the digital value that can read by microcontrollers) Can also used as digital pins, A0=D14, A1=D15, A2=D16, A3=D17, A4=D18, A5=D19.

KS0001 5-24.png Microcontroller

Each Arduino board has its own microcontroller. You can regard it as the brain of your board.
The main IC (integrated circuit) on the Arduino is slightly different from the panel pair. Microcontrollers are usually from ATMEL. Before you load a new program on the Arduino IDE, you must know what IC is on your board. This information can be checked at the top of IC.



Let’s make a simple test for the UNO built-in LED (D13).
We will work on blinking an LED. That’s right - it’s as simple as turning a light on and off!
Now enough talking - let’s get started with the LED project.

Blinking an LED
It’s pretty simple to turn a built-in led on and off. We only require UNO R3 control board and a USB cable to enter the wonderful programming world.
Connect your UNO R3 board to the computer’s USB port using a USB cable for communication.

0428图片15.png


Test Code:
Open Mixly blocks platform to get started with coding.
First, click IN/OUT, drag the “DigitalWrite PIN# (0)Stat(HIGH)” block.

0428图片16.png

This block is used to set the level HIGH or LOW of Digital pin.

  • Select HIGH is to set the HIGH level.
  • Select LOW is to set the LOW level.
  • The HIGH level is the state of high voltage, generally recorded as 1.
  • High voltage, high current, the LED lights.
  • The LOW level is the state of low voltage, generally recorded as 0.
  • Low voltage, low current, the LED Not lights.

To observe the LED blink obviously, we need to add a Delay block.
Check the test code below and upload it to your UNO R3 board.
0428图片17.png

What you should see:
Drag the test code to Mixly window; remember to select the proper board and COM port.
Then compile and upload the code to your control board. Upload success message will appear on the bottom bar.
The UNO built-in LED (label “L”) will turn on for 1 second, and then turn off for 1 second, alternately and circularly.

0428图片18.png

0428图片19.png



Project 2: Displaying Images

The robot run status will show on keyestudio 8x16 LED matrix panel. So first let’s learn how to program this 8x16 LED matrix panel.

keyestudio 8x16 LED matrix panel


Hardware Introduction: